Embedding Theorems in Banach-valued B-spaces and Maximal B-regular Differential-operator Equations
نویسندگان
چکیده
The embedding theorems in anisotropic Besov-Lions type spaces Bp,θ(R ;E0,E) are studied; here E0 and E are two Banach spaces. The most regular spaces Eα are found such that the mixed differential operators Dα are bounded from Bp,θ(R ;E0,E) to B q,θ(R ;Eα), where Eα are interpolation spaces between E0 and E depending on α= (α1,α2, . . . ,αn) and l = (l1, l2, . . . , ln). By using these results the separability of anisotropic differential-operator equations with dependent coefficients in principal part and the maximal B-regularity of parabolic Cauchy problem are obtained. In applications, the infinite systems of the quasielliptic partial differential equations and the parabolic Cauchy problems are studied.
منابع مشابه
Embedding Operators and Maximal Regular Differential-operator Equations in Banach-valued Function Spaces
This study focuses on anisotropic Sobolev type spaces associated with Banach spaces E0, E. Several conditions are found that ensure the continuity and compactness of embedding operators that are optimal regular in these spaces in terms of interpolations of E0 and E. In particular, the most regular class of interpolation spaces Eα between E0, E, depending of α and order of spaces are found that ...
متن کاملOperator-valued Fourier Multipliers in Besov Spaces and Its Applications
In recent years, Fourier multiplier theorems in vector–valued function spaces have found many applications in embedding theorems of abstract function spaces and in theory of differential operator equations, especially in maximal regularity of parabolic and elliptic differential–operator equations. Operator–valued multiplier theorems in Banach–valued function spaces have been discussed extensive...
متن کاملOPERATOR-VALUED Lq → Lp FOURIER MULTIPLIERS
Fourier multiplier theorems provides one of the most important tools in the study of partial differential equations and embedding theorems. They are very often used to establish maximal regularity of elliptic and parabolic differential operator equations. Operator–valued multiplier theorems in Banach–valued function spaces have been discussed extensively in [1, 2, 3, 5, 7, 8, 9, 10, 11, 12 ]. B...
متن کاملLinear and nonlinear degenerate boundary value problems in Besov spaces
Keywords: Boundary value problems Differential-operator equations Banach-valued Besov spaces Operator-valued multipliers Interpolation of Banach spaces a b s t r a c t The boundary value problems for linear and nonlinear degenerate differential-operator equations in Banach-valued Besov spaces are studied. Several conditions for the separability of linear elliptic problems are given. Moreover, t...
متن کاملMaximal regular boundary value problems in Banach-valued function spaces and applications
The nonlocal boundary value problems for differential operator equations of second order with dependent coefficients are studied. The principal parts of the differential operators generated by these problems are non-selfadjoint. Several conditions for the maximal regularity and the Fredholmness in Banach-valued Lp-spaces of these problems are given. By using these results, the maximal regularit...
متن کامل